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Deformable Linear Objects Manipulation with
Online Model Parameters Estimation

Alessio Caporali, Piotr Kicki, Kevin Galassi, Riccardo Zanella, Krzysztof Walas and Gianluca Palli

Abstract—Manipulating Deformable Linear Objects (DLOs)
is a challenging task for a robotic system due to their unpre-
dictable configuration, high-dimensional state space and complex
nonlinear dynamics. This paper presents a framework addressing
the manipulation of DLOs, specifically targeting the model-based
shape control task with the simultaneous online gradient-based
estimation of model parameters. In the proposed framework, a
neural network is trained to mimic the DLO dynamics using
the data generated with an analytical DLO model for a broad
spectrum of its parameters. The neural network-based DLO
model is conditioned on these parameters and employed in an
online phase to perform the shape control task by estimating the
optimal manipulative action through a gradient-based procedure.
In parallel, gradient-based optimization is used to adapt the
DLO model parameters to make the neural network-based
model better capture the dynamics of the real-world DLO being
manipulated and match the observed deformations. To assess its
effectiveness, the framework is tested across a variety of DLOs,
surfaces, and target shapes in a series of experiments. The results
of these experiments demonstrate the validity and efficiency of
the proposed methodology compared to existing methods. Project
website at https:/sites.google.com/view/dlo-manipulation.

Index Terms—deformable linear objects, manipulation, shape
control

I. INTRODUCTION

OBOTIC solutions involving Deformable Linear Objects

(DLOs) like ropes, cables, hoses, and wiring harnesses
are highly complex, presenting various challenges from two
main perspectives: perception [1] and manipulation [2]. From
a perception standpoint, dealing with DLOs is a tough task.
Their ambiguity can make it difficult to distinguish different
parts of them or to distinguish DLOs from other objects [3],
especially given their relatively small size [4], [5]. Moreover,
the detection of the full DLO state, including the twist
along the DLO, poses also a challenge [6], [7]. Regarding
manipulation, DLOs prove to be challenging due to their
unpredictable configuration behavior, high dimensional state-
space, and complex nonlinear dynamics [2], [7]. Therefore, a
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Fig. 1: Schematic view of the two phases composing the pro-
posed manipulation framework: 1) training phase for dataset
generation and NN training, and 2) online phase for simul-
taneous estimation of the best action and model parameters
during the shape control task.
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deep understanding of their physical characteristics is essential
for predicting and controlling their shape effectively [8].

In this paper, a manipulation framework exploiting a physi-
cal prior of DLOs dynamics is proposed. In particular, a data-
driven learned model of the DLOs’ dynamics is developed
to predict the DLO behavior under manipulative actions. The
prediction is made using a Neural Network (NN) trained to
approximate the dynamics of a class of DLOs, by conditioning
its predictions on the set of the analytical model parameters.

First, the DLO’s dynamics is modeled by a set of differential
equations describing the DLO as point masses connected by
axial and torsional springs [9], obtaining a so-called analytical
DLO model. Then, the analytical DLO model is used to
generate a comprehensive dataset by systematically sampling a
variety of model parameters, diverse DLO configurations, and
various manipulation actions. Consequently, a neural network
is trained utilizing this generated dataset, as visualized in the
training phase depicted in Fig. 1. Notably, the neural network
is conditioned over the model parameters, such that it can be
easily adapted to match different real-world DLOs.

The obtained neural network model is employed during the
online phase in Fig. 1 to estimate the manipulation actions to
steer the DLO from its initial to a final target configuration,
performing a task commonly referred to as shape control. In
this context, the adoption of the network model is preferred
over the analytical model due to its computation efficiency,
stability, and scalability.

The proposed method uses a gradient-based approach to
estimate the best manipulation action to achieve a desired
target configuration, by minimizing the error between the net-
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work prediction and the desired DLO configuration. A similar
gradient-based approach is exploited to estimate the model
parameters of the DLO, where the estimation is performed
by minimizing the error between the model prediction and
the observed real-world DLO configuration obtained after a
manipulation action.

The proposed framework can directly be applied for the
manipulation of various DLOs on diverse surfaces, thanks to
the data-driven approximation of the DLO dynamics condi-
tioned on the model parameters. Therefore, there is no need
to: 1) generate every time new task-specific data as in [7],
2) introduce complex online adaptation controllers as in [2],
[10], 3) perform cumbersome and not intuitive parameters
identification procedures as in [8], [11].

In summary, the contributions of this paper are:

o NN-based DLO dynamics approximation conditioned on
several analytical model parameters allowing adaptability
to different real-world scenarios;

« Efficient gradient-based action prediction and parameters
estimation employing the same learned NN model;

o Experimental validation of the method on different real-
world DLOs and surfaces.

In the following, the related works are discussed in Sec. II.
The proposed framework is detailed in Sec. III. The experi-
mental evaluation of the method is provided in Sec. IV and
the conclusions are drawn in Sec. V.

II. RELATED WORKS
A. DLO Shape Control Task

The term shape control of DLOs is typically used to refer to
two different manipulation problems targeting the achievement
of a final target shape: 1) the manipulation of a soft DLO
with a sequence of pick and place actions [12]-[14], where
the deformation of the DLO is held in place by the friction of
the surface underneath. 2) the manipulation of elastic DLOs
with one or more robotic arms and/or one end of the DLO
fixed [2], [7], [10], [15], [16], where the second arm is used
to achieve better control of the shape, e.g. in the situation
where the DLO’s stiffness and the object exhibit rigid or
plastic behavior. The outcome of the task can be assessed by
comparing the achieved configuration to the target one in two
possible ways [17]: by measuring their relative similarity; by
evaluating their absolute similarity (i.e. a more challenging
alternative considering also the final positioning in space). In
this paper, the latter is employed.

B. Model-free Approaches

One of the popular approaches to manipulating DLOs is
to use methods that do not require nor create DLO mod-
els. Examples of these methods are those based on expert
demonstration. In [18], shape similarity is used to determine
which human demonstration should be replayed by the robot to
achieve the goal. Whereas in [19], human expertise was used
to learn the DLO manipulation policy. This kind of policy can
be also learned without supervision in a reinforcement learning
paradigm, however, it is typically done only in simulation [17],

which limits the potential application to the real DLOs. To
approach this reality-gap and improve the robustness, authors

f [20]-[22] focused on the online adaptation of the DLO
control strategy. In the case of [22], the parameters of the
controller were adjusted online based on the tracking error.
Whereas in [20], [21], the control law relies on the Jacobian
that locally approximates how the movement of the grippers
affects the DLO. These methods, which utilize local approxi-
mations of DLO motions and online adaptation of controller
parameters, have the potential to enhance the system’s ma-
nipulation abilities in the context of model-free approaches.
Nevertheless, model-based approaches can typically strengthen
the system’s robustness through its better generalizability to
diverse scenarios.

C. Learned DLO Models

The literature related to learning-based methods can be
divided by the type of DLO to be manipulated. Concerning
the manipulation of soft DLOs like ropes with pick and
place actions, in [13] an image-based predictive DLO model
is learned in a self-supervised manner. Instead, in [14], the
image of the DLO is embedded in the latent space with linear
dynamics imposed on it. Differently, [12] proposes learning the
DLO dynamics in state-space while enforcing the physic priors
via a biLSTM architecture modeling the DLO as a chain-like
mass-spring system. In all these works, manipulation actions
are sampled randomly and the best one is selected considering
suitable cost functions. On the contrary, a gradient-based
approach for estimating the best action is proposed in this
work, where also a rotation component is estimated. In this
way, a more complex manipulation action can be executed with
respect to the simpler linear displacement operation. Regarding
the manipulation of elastic DLOs, several works proposed a
learning-based framework to predict the DLO dynamics. In
[2], [7], [10] the DLO dynamic is approximated with data-
driven approaches trained using simulation data. In [2] the
authors propose an online adaptation of the DLO model to
compensate for the reality gap. Similarly, in [10] a linear
residual model is estimated online.

D. DLO Analytical Models and Physical Parameters

Many different physical models of DLOs have been pro-
posed in the past [8], ranging from simpler mass-spring [9]
and energy-based models to more accurate but computationally
demanding elastic-rod, dynamic splines, and finite element
models [8]. Other than the selection of a specific model, the
choice of the integration method is crucial to achieve a good
trade-off between simulation accuracy and efficiency, and dif-
ferent integration approaches like Runge-Kutta and symplectic
have been proposed [23]. As opposed to the mentioned force-
based methods, a differentiable position-based simulation of
DLOs is proposed in [11] where the integration steps are
avoided leading to a more efficient and stable simulation.

Despite the many models available, their application in
robotic systems is usually marginal due to the high computa-
tional cost and sensitivity to the choice of physical and simula-
tion parameters. Indeed, their estimation is a cumbersome task,
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Fig. 2: DLO analytical model representation.

as can be seen in [8] where the physical model parameters are
constantly adjusted to make the simulation results approach the
experimental ones. Alternatively, in [11], the differentiability
of the framework is exploited for the estimation of model
parameters. However, the process is quite slow and can not
be performed in an online framework.

Learning-based methods usually employ a DLO simulator
to collect training data, where the simulator is generally
constructed based on one of the mentioned DLO models. How-
ever, only a few learning-based works pay attention to DLO
parameters. In [14] and [7] the DLO parameters employed
in the simulator are estimated by optimizing the simulation
against a small set of real samples, employing a sampling-
based method [14] or a differential evolution strategy [7].

Compared to the parameters estimation procedures of [7],
[8], [11], [14], this paper proposes an efficient gradient-based
procedure which can seamlessly be performed online during
the execution of the shape control task.

III. METHOD

The proposed framework focuses on shaping DLO toward
a desired target. Simultaneously, during task execution, the
framework also estimates the model parameters to enhance its
ability to capture the dynamics of the actual manipulated DLO.
The framework exploits two different phases (see Fig. 1),
namely a training phase and an online phase. In the first one,
the neural network-based DLO model is trained to mimic the
behavior of the analytical DLO model for a wide range of
its parameters. While in the online phase, the trained NN
model is used to predict actions and simultaneously optimize
the parameters so that the NN model predictions, which are
conditioned on these parameters, match the observed behavior
of the DLO.

The DLO analytical model is introduced in Sec. III-A, and
the DLO state representation is detailed in Sec. III-B. The NN
model is presented in Sec.III-C whereas the gradient-based
estimation of the action and model parameters is discussed
in Sec. III-D. Finally, the shape control task with online
parameters adaptation is presented in Sec. III-E.

A. Analytical Model

A DLO can be physically modeled via a set of nodes having
proper mass and axial springs connecting the nodes to create
a serial chain [9], as shown in Fig. 2. In addition, the bending
stiffness of the DLO is modeled by placing a torsional spring
at each node. To improve the stability of the model, a viscous
friction proportional to the velocity of the node is included as
a damping term.

The dynamics of the generic node ¢ can be written as:

mip; = —kap; + £ + £2, (1)

where p is the node coordinates, k4 a damping constant, f;
the force due to the axial effects and f? the forces due to the
bending effects. The axial effects f are computed as:

£ = —ky(li — 1) + ks (lign — 1041w, (2

where [; and [{ are the current and initial lengths of link 4
respectively, while u; represent the unit vector of node 7. With
reference to Fig. 2, the bending effect can be written as:

£ —k, Bi—1
! lisin B;_y

B
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3)
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i1 S Bi
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where
[laigs x |

(Wit1, ;)
represents the angle between u; and w;1.

The manipulation action executed on the DLO model is
parametrized as a pick-and-place operation executed on the
edge of the DLO, i.e. between two consecutive nodes. The
decision to perform actions at the edge level is primarily
influenced by the physical design of the gripper. In fact, the
gripper does not interact with the DLO at a single node,
but it engages with the DLO in a manner that can be more
accurately described as the movement of the segment between
two consecutive nodes. The DLO action parameters vector is
defined by

B = arctan

a = [O‘a(sxa(sya(;&]v 4

where « denotes the index of the edge to grasp, &, and
dy are the linear displacements applied to the selected edge
{Pa,Pa+1} and dy is the rotation applied to the initial edge
orientation. The effect of the action introduced above is sim-
ulated using forward Euler method applied to the discretized
version of eq. (1).

B. DLO Perception and State Representation

Since the DLO’s dynamics is based on a mass-spring-
damper system, an appropriate representation according to the
chosen model is utilized. The DLO state V' is represented as a
sequence of n 2D points in the Cartesian space, i.e. V € R™*2,
In the simulation, each node represents the position of the
simulated masses. The 2D coordinates of the DLO in the real
scenario are obtained using R7-DLO [1], an algorithm for real-
time DLO perception, where the input image is provided by
a fixed 3D vision sensor. From the acquired point cloud, the
workspace plane is segmented out to obtain the DLOs points
in the scene. These points are then projected on the image
plane by utilizing the camera’s intrinsic parameters obtaining
a binary mask of the DLO in the scene. The binary mask is
forwarded to RT-DLO that performs the modeling of the DLO
as a line graph representation of the DLO, i.e. a sequence
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Fig. 3: Sequence of k = 5 dataset samples generated with the
simulated DLO. Vj, in red, Vo, in blue and action in green.

of nodes and edges, as shown in Fig. 1. Therefore, the node
coordinates in the line graph represent the state V.

C. Neural Network Model

A NN is used to approximate the analytical DLO model,
significantly improving computational efficiency. Indeed, the
complexity of the analytical DLO model (eqs. (1)-(3)) affects
its performance and makes using it in an online framework
challenging. Instead, a NN can be trained to accurately repli-
cate the DLO dynamics by exploiting a dataset of DLO
movements, which can be generated offline using the analytical
DLO model. Thanks to the use of a relatively small neural
network, a constant and short inference time is obtained
which is more than an order of magnitude smaller than the
time needed to evaluate the analytical DLO model. While
the analytical model can be hard to differentiate, the NN
model is easily differentiable wrt the parameters, improving
the possibility of optimizing all relevant tasks.

1) Dataset Generation: The dataset is generated by simu-
lating the analytical DLO model subjected to a set of random
actions. Each data sample consists of the DLO initial and final
configurations, the performed action, and the employed model
parameters. The DLO initial and final configurations are sets of
2D points characterizing the DLO state, i.e. V;, and V5, while
the action is described by parameters introduced in eq. (4).

The DLO axial deformation is assumed to be negligible for
the purposes of this work, thus the coefficient k; is kept fixed
to a high value. Instead, the damping term k4, the bending
term kjp, the length of the DLO, and the mass of the DLO
change within predefined ranges. In particular, both the length
and the mass are assumed to be known quantities since they
can usually be measured. Eventually, the DLO length can be
estimated online using the perception algorithm and the mass
can be measured using force sensors mounted on the robot.
The other two terms are instead difficult to measure, so they
are estimated online.

Aiming to learn a general DLO model, both the action and
model parameters are drawn from a broad range of values
covering the expected real-world variability. In particular, each
value is sampled from a uniform distribution with specific
boundaries, except for the edge index which is sampled from
a discrete uniform distribution.

To generate the dataset, the physical parameters are set
to random values from the physically plausible ranges, and
the simulated DLO is initialized with an almost linear initial
configuration. Then, a set of k actions is sampled and the
behavior of DLO is simulated after applying them sequentially.
This procedure is exploited in order to build a diversified
dataset in terms of DLO configuration complexity. In Fig. 3
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Fig. 4: Neural network architecture.

an example sequence is shown. After the execution of each
action, a dataset sample is saved containing the reached
DLO configuration, the initial DLO configuration, the model
parameters, and the performed action.

2) Data Augmentation: To improve the training efficiency
and generalization capabilities of the NN model, several aug-
mentation and normalization strategies are implemented on the
data. The idea is to exploit the symmetries in the DLO data
to reduce the amount of information the NN has to learn.

The normalization is performed by finding a transformation
that makes Vj, aligned to the x-axis and mean-centered, and
applying it to normalize both Vi, and V4. This transformation
is composed of the translation equal to the negative geomet-
rical center of the Vi, and rotation that is required to make
the first principal component of the points Vj, aligned to the
x-axis. The nodes are ordered from negative to positive x
values by flipping Vi, and V,,, along the rows if necessary. The
action index « is adjusted accordingly. In addition, the action
parameters are scaled to be within the [0, 1] range for « and
[—1, 1] range for the displacements. The model parameters are
also normalized within the [0, 1] range.

3) Neural Network Architecture: The neural network archi-
tecture is based on a set of Linear layers followed by ReLU
activation functions. In detail, the network is composed of four
main blocks illustrated in Fig. 4: the action block, the physical
parameters block, the DLO block, and the prediction block.
The input of the network is the initial configuration of the
DLO Vi, the action parameters a, and the model parameters
p. The length is not provided as input since it is implicit from
Vin, thus p denotes only the model parameters provided as
input, i.e. p = [m, kyp, kq]. The output of the network, denoted
as V, is the sequence of predicted changes of the 2D DLO
coordinates from the initial configuration. The final predicted
DLO configuration Vjeq is expressed as

Vired = F(Vins a,p) = V (Vin, a,p) + Vin. (5)
The network is trained to minimize the mean squared error

between the predicted Vjeq and the expected Vo final config-
urations.

D. Gradient-based Estimation of Action and Parameters

The trained NN model is used to estimate both the next
manipulation action and the parameters that allows for accurate
approximation of the observed DLO behavior. These two esti-
mation procedures are performed using numerical optimization
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of the loss function between two DLO states. This loss is
computed as the sum of L2 norms between corresponding
points among the two states and can be defined by

D(Vi, Vo) = > Vi — Vaill. (6)
i=1

An illustration of this idea is provided in Fig. 5. Since
the NN model is intrinsically differentiable, a gradient-based
approach can be used for the optimization of the above-
mentioned loss function. In addition, thanks to the possibil-
ity of performing the optimization in batch, the mentioned
gradient-based optimization can be performed quite efficiently.

1) Action Estimation: For the best action estimation given
the current DLO state Vi, and the model parameters p, the
action parameters a¢ minimizing the difference between the
NN prediction F(Vin,a,p) and the target shape Vig, i.e. the
goal to be reached in the shape control task, are sought.
While this can be easily done using gradients for the edge
displacement parameters, this is not the case for the edge
index. Thus, the efficient batch processing capabilities of the
NN model are employed, and n— 1 optimizations are executed
simultaneously, with the assumption that the edge index is held
constant in each of them. Finally, the best action among the
ones evaluated for each edge is selected. This optimization
procedure can be in general described by

a* = argmin D(F (Vin, @, D), Vigt), 7

where a* denotes the action that maximally reduces the differ-
ence between Vi, and Vig according to the used NN model F.
However, as mentioned, in practice first are performed n — 1
optimizations of the form

a’; = [J7 %I‘gém(isn D(]:(Vlm []7 5:6? §y7 60]729)7 V;gt)L (8)

2,0y,00

where a’ denotes the best action obtained for the fixed edge
index j, and then the best action a* is sought from the a} by
D(f(‘/in;ajvp)a‘/tgt)- (9)

*

a" = argmin

aj forje{1,2,...,n—1}

2) Parameters Estimation: Similarly to actions, the model
parameters are estimated by searching for the ones that min-
imize the difference between the NN prediction Vjeq and the
observed DLO state V. This optimization can be written by

k:aké = argmin D(‘F(‘/ima'ap)?‘/oul) (10)
kb,ka
where kj, k) denotes the optimal values of the bending and
damping coefficients, and p = [m, ks, kg]. Since the mass
m can be measured, it is not optimized but measured and
provided as input to the NN model.

Algorithm 1: Online Adaptation
Input: Vg
OUtPUt: V:)uh kd7 kb

1 kd7 kb — kd,starty kb,starl
2 Vina vouta A* — (Z)

3 Vi < get_dlo_state()

4 € D(Vin, Vi) /10
5 while ¢ > ¢, do

6 a* < best_action(Vin, Vig, ka, k)

7 robot_manipulation(a*)

8 Vour < get_dlo_state()

9 Vin, Vout, A* +— update_dataset(Vi,, Vour, a*)
10 ka, ky < best_parameters(Vin, Vour, A*)
11 € < D(Vou, Vig) /1
2 | Vi Vou

E. Shape Control Task with Online Parameters Adaptation

To improve the manipulation capabilities of the robotic
system in the case of the shape control task for a real
previously unseen DLOs, an approach that utilizes both model-
based DLO shape control and the online model parameters
adaptation is proposed. This can be achieved by jointly using
the gradient-based action and parameters optimization routines
developed in Sec. III-D. In Alg. 1, the proposed method is
detailed. If there is no prior knowledge, the model parameters
kq and kp can be initialized at the midpoint of the range used
in the dataset generation, see Sec. III-C1. Therefore, given a
target shape Vig, the robotic system iterates (line 5) executing
a sequence of manipulation actions until the error between the
current observed state Vo, and the target shape Vi computed
according to eq. (6) is below a user-defined threshold €.

At each iteration, the camera system is first used to cap-
ture a new sample from the scene and process it via the
perception system described in Sec. III-B, thus obtaining an
initial configuration (line 3). Then, the best action to move
the DLO toward the target configuration is computed (line 6)
according to eq. (7), and the result of the performed action
on the real system is observed (line 8). The interaction with
the real system is saved (line 9) into a task dataset, which is
initialized empty at the beginning of the task. The task dataset
is used for the best parameters estimation performed following
eq. (10) (line 10). Finally, the configuration error is updated
(line 11) by comparing the achieved shape to the target one.

IV. EXPERIMENTS

The manipulation framework of Sec. IIl is evaluated in
the context of a shape control task, with a robotic setup
composed a Panda Robot equipped with a parallel-jaw gripper,
a Photoneo Motioncam3D statically mounted on the robotic
cell, and a selection of ropes and surfaces.

Three ropes are used in the experiments: a white rope (0.45
m, 0.02 kg, 0.01 m diameter); a black rope (0.42 m, 0.05 kg,
0.014 m diameter); and a red rope (0.50 m, 0.02 kg, 0.005 m
diameter). Note, the black rope is the stiffest one, while the red
rope exhibits a higher degree of bending elasticity compared to
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Fig. 6: Experimental robotic setup comprising different ropes
and surfaces (a). Target shapes achieved with the red rope on
the cardboard surface (b).

the white rope. Additionally, two planar surfaces with different
physical properties are used: a cloth and a cardboard surface.
The cardboard is smoother and more slippery than the cloth.

The experiments were executed employing as hardware an
Ubuntu PC equipped with an Intel CPU i7-12700H clocked at
2.3GHz and an Nvidia GPU 3050Ti.

A. Optimization Details

The NN model (Sec. III-C) is trained on a dataset of
DLO manipulation samples, obtained by the analytical model
(Sec. III-A), comprising about 275K elements. The dataset is
generated by employing the following boundary values for
action and model parameter ranges. Regarding the action,
a € [0,15]; 4, and ¢, are confined at +0.10 m; and dg
is within +7/4 rad. Concerning the model parameters, the
damping coefficient k4 € [3, 30] Ns/m; the bending coefficient
ky € [0.05,1.0] N/m; the DLO length within [0.15,0.50] m;
the mass within [0.02,0.1] kg.

1) NN Model Training: A 90-10% split is employed to
organize the dataset into training and validation sets. The
network is trained for 100 epochs (batch size 128, learning
rate 5 x 107°). The final weights are selected as the ones
having the minimum mean squared error validation loss.

2) Action and Parameters Estimation: The gradient-based
action estimation of Sec. III-D is performed for 500 optimiza-
tion steps employing a learning rate of 0.005. Regarding the
estimation of the parameter, the optimization is performed for
3000 steps with a learning rate of 0.01. In both cases, an
early stopping procedure is implemented in case of the earlier
convergence. The tanh and sigmoid activation functions are
employed to limit the normalized action and model parameters,
respectively, to the ranges of [—1,1] and [0, 1] (Sec. II-C2).
This ensures to obtain denormalized values consistent with the
boundaries employed in the dataset.

B. Shape Control Task with Online Parameters Estimation

The shape control task involves the manipulation of four
distinct target shapes: the U, A, S and [ shapes (see Fig. 6b).
Notably, the A shape differs from the U shape by requiring
a more pronounced bending in its central region. Conversely,
the S shape is characterized by two opposing and symmetric

bends. The 7 shape is used to evaluate the situation of zero
curvature target, where the / target is rotated by 90 deg with
respect to the initial configuration. The reachability of all
these shapes was ensured by rearranging the ropes between
the target and initial configurations using a single human arm
restricted to the motions available to the robot.

The task is performed following the online adaptation ap-
proach introduced in Sec. III-E. The initial DLO configuration
Vin is a straight line. The initial model parameters kg4, k;, are
selected around the mid values of their ranges in the dataset,
i.e. kg = 14 and k;, = 0.5. The task is executed for each target
shape Vig on each planar surface 5 times. The execution of
the task is terminated once the error computed according to
eq. (6) between Vo and Viy is below 0.01 m.

The results of the experiments are provided in Fig. 7, where,
within each subplot of a specific rope, columns illustrate the
task execution for specific target shapes, while rows provide
an analysis of error and model parameters. In detail, the first
row focuses on the mean error, with a dashed horizontal line
denoting the 0.01 m threshold marking the completion of the
task. The second and third rows delve into the examination
of the bending parameter k; and the damping parameter kg
respectively. Here, the dashed lines represent the estimated
model parameters derived from all samples across all repeti-
tions performed for a given shape. These values, in essence,
serve as potential reference values for the specific parameters.

Analyzing the x-axis in the plots, iteration 0 represents the
initial condition with a straight DLO configuration and model
parameters at their initial values. An action is then executed by
the robotic system, updating the observed DLO configuration.
Model parameters are recalculated based on a single data
sample, resulting in updated values at manipulation iteration 1.
This iterative process continues until the specified termination
condition is met. At manipulation iteration m, the parameter
estimation is based on m data samples.

Examining the plots in Fig. 7, it is worth noting that similar
bending parameters are consistently estimated for each specific
rope on the cloth surface, regardless of the chosen target shape.
The parameters estimated on the cardboard surface exhibit a
higher degree of variability, indicating the presence of more
complex dynamics due to increased slippage. The estimation
of the damping term is less stable. In general, different pairs
of k4 and k; values are estimated for the same rope on
different surfaces, highlighting the adaptation processes. The
estimated bending parameters comparison confirms signifi-
cantly different physical properties between the three ropes
and that the black rope is the stiffest one, as initially predicted.
For instance, on the cloth surface, the reference bending values
are approximately 0.06 and 0.08 for the white and red ropes
and about 0.19 for the black rope.

To gain a deeper insight into the impact of the online model
parameters estimation, Fig. 8 presents a comparison among
mid-range, online estimated, and best parameters. The latter
refers to those estimated at the end of each task repetition,
while the mid-range to the ones from which online estimation
starts. These parameter setups were compared using the mean
prediction error, denoted as D(Vbrem Vout)>» computed after each
iteration of the shape control task across all the target shapes.
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Fig. 7: Outcomes of the shape control task involving online adaptation of model parameters, conducted across various rope
types and surfaces. Average results across 5 repetitions per task (standard deviations confidence region intervals).
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Fig. 8: Comparing prediction errors using mid-range, online,

and best model parameters across ropes and surfaces.

The plots illustrate how, within just a few iterations, the
proposed method attains parameters that yield a mean error
between Vjeq and Vi, comparable to the best scenario, and in
most of the cases significantly better than for the mid-range
parameters.

C. Comparison with state-of-the-art

The NN model of Sec. III-C3, and here shortly denoted
as NN, is subjected to a comparative analysis against several
previously proposed architectures concerning DLO dynamics
prediction. These include the bi-directional LSTM (BiLSTM)
[12], the interaction-network bi-directional LSTM (INBiL-
STM) [7], the graph neural network architecture (GNN) [10],
and the RBF network [2]. To ensure a fair comparison, a
comparable number of parameters is employed across all
the networks. The goals of this section are: (i) to compare
different neural network-based DLO models, (ii) to show that
the proposed approach to DLO modeling with conditioning on
parameters and online adaptation is architecture-agnostic, (iii)
to compare the performance of the proposed adaptation of the
input model parameters against the direct adjustment of the
neural network weights, as in [2].

The analysis is carried out on the data obtained in the shape
control task of Sec. IV-B on the cloth surface, by computing
the mean prediction error. A 4-fold cross-validation approach
is used. Fold 1 employs the data of the U shape for parameters
estimation and the data of the A, S, and I shapes for forward
prediction error. The same holds for sets 2, 3 and 4 for shapes
A, S and I respectively.
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Fig. 9: Prediction error for fix (no params) vs conditioning
parameters across different models. For the latter, the symbol
(*) denotes that the same shape is used for parameters esti-
mation and forward prediction error, whereas with (**) the
4-fold cross-validation approach is denoted. With fixed mid-
range and varied the two employed datasets are indicated.

1) Fixed vs Conditioning Parameters: To validate the
choice of a NN model conditioned on the model parameters,
a new dataset of 275K samples is generated with fixed mid-
range parameters (kg = 14, k, = 0.5, mass of 0.02kg,
and length in [0.4,0.5]m). The comparison is performed by
optimizing the models using three different approaches: 1)
the mid-range dataset without considering parameters (no
params (fixed mid-range)); 2) the varied parameters dataset of
Sec. IV-A without considering parameters (no params (var-
ied)); 3) using modified architectures that incorporate model
parameters as input (conditioning params). Notably, the latter
case implies estimating the parameters according to Sec. III-D
before evaluating the prediction error. This is performed either
employing the same shape for both estimation and prediction
(conditioning params (*)) or with the introduced 4-fold cross-
validation procedure (conditioning params (**)). The results
are shown in Fig. 9. The plots show that conditioning the
models on the parameters allows to achieve better accuracy
than with the model that is trained to be robust to the range
of the parameters (no params (varied)), or only with fixed
parameters (no params (fixed mid-range)), for all considered
architectures. Moreover, this is true also when optimized and
tested for different shapes (compare conditioning params (*)
and (**) cases, see also Sec. IV-C2). Additionally, since all
architectures show similar accuracy, a simpler and faster fully
connected NN model is preferable (see Sec. IV-C3).

2) Parameters vs Weights Update: Prior work proposed to
directly update the weights of the model to achieve online
adaptation [2]. In this section, a comparison against this
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Fig. 10: The mean prediction error (log scale) of the input
parameters (ours) vs neural network weights (RBF [2]) update,
evaluated on the same shape (*) or on different shapes (**).

approach is established in Fig. 10, where fold refers to the
4-fold cross-validation approach. Fig. 10 shows that updating
the network weights directly, as proposed in the RBF approach
[2], leads to overfitting to the specific target shape, resulting
in a loss of generality (compare (*) and (**) cases). In
contrast, when the model parameters update is considered, as
employed in the proposed approach (NN), a higher level of
generalization is observed, resulting in consistent outcomes
across various tasks, regardless of the specific task performed
during parameter estimation.

3) Architecture Efficiency: To provide an insight about the
considered DLO model architecture efficiency, the time to per-
form forward and backward passes is measured: NN 0.20/0.65
ms; BILSTM 0.48/0.98 ms; INBILSTM 0.75/1.42 ms; GNN
0.63/1.05 ms. Taking into account the time complexity of each
architecture, it can be concluded that the proposed simple NN
model emerges as the most favorable.

D. Limitations

The proposed framework exhibits several limitations. First,
the action is predicted over a 1-step horizon, in contrast to
other approaches [10], [12]. Nevertheless, the current gradient-
based action estimation can be expanded to a IN-step horizon
using the same batch approach. However, encompassing all
possibilities would result in an exponential growth of the
task. Therefore, the introduction of sampling-based, Top-K,
or other techniques is necessary to constrain the prediction
task scale. Moreover, our approach is also a forward model
of the DLO, so it can be used in any MPC-like framework to
enable manipulation planning in longer horizons. The second
limitation is related to the fixed number of nodes, e.g. 16 in
this work, which would necessitate the generation of new data
and the retraining of a new network with adapted dimensions
if modified. A third limitation is to assume the DLO dynamics
negligible during manipulation. Indeed, the analytical model
provides a full trajectory of the DLO response to the pick-and-
place action. However, the current NN model only captures the
final response.

V. CONCLUSION

The proposed manipulation framework solves shape control
tasks with plane contact involving a range of real-world DLOs
and different contact surfaces. The framework exploits an
online model parameter estimation procedure to adapt the NN
model predictions to the specific DLO being manipulated.
The efficiency of the proposed NN model approximating
the DLOs’ dynamics is exploited both in the actions and
parameters estimation routines, and has been proven compared
to other architectures. In future works, the proposed NN model
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will be tested in the context of branched deformable linear
objects, i.e. wiring harnesses. Additionally, the extension of
the proposed framework to a dual-arm manipulation and to
manipulation in presence of environmental obstacles will be

investigated.
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