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Self-Supervised Regression Of sSEMG Signals Combining Non-Negative Matrix
Factorization With Deep Neural Networks For Robot Hand
Multiple Grasping Motion Control

Roberto Meattini, Alessio Caporali, Alessandra Bernardini, Gianluca Palli and Claudio Melchiorri

Abstract—Advanced Human-In-The-Loop (HITL) control
strategies for robot hands based on surface electromyography
(sSEMG) are among major research questions in robotics. Due
to intrinsic complexity and inaccuracy of labeling procedures,
unsupervised regression of SEMG signals has been employed in
literature, however showing several limitations in realizing mul-
tiple grasping motion control. In this work, we propose a novel
Human-Robot interface (HRi) based on self-supervised regression
of SEMG signals, combining Non-Negative Matrix Factorization
(NMF) with Deep Neural Networks (DNN) in order to both avoid
explicit labeling procedures and have powerful nonlinear fitting
capabilities. Experiments involving 10 healthy subjects were car-
ried out, consisting of an offline session for systematic evaluations
and comparisons with traditional unsupervised approaches, and
an online session for assessing real-time control of a wearable
anthropomorphic robot hand. The offline results demonstrate
that the proposed self-supervised regression approach overcame
traditional unsupervised methods, even considering different
robot hands with dissimilar kinematic structures. Furthermore,
the subjects were able to successfully perform online control
of multiple grasping motions of a real wearable robot hand,
reporting for high reliability over repeated grasp-transportation-
release tasks with different objects. Statistical support is provided
along with experimental outcomes.

Index Terms—Multifingered Hands; Intention Recognition;
Human Factors and Human-in-the-Loop.

I. INTRODUCTION

Human-Robot interfaces (HRi) have been studied for ap-
plications of telemanipulation, prosthetics and programming
by demonstration [1]. In this context, several works have
investigated the decoding of surface skin electromyography
(sEMQG) to realize HRi for human-in-the-loop (HITL) robot
hand grasping control. In recent decades, research efforts have
been mostly dedicated to investigating the exploitation of
pattern recognition based machine learning to achieve more
natural and intuitive HRi based on muscular activation [2].
Specifically, one methodology consists in classifying sSEMG
signals in order to produce discrete commands for the activa-
tion of different grasping actions on the robot hand, resulting
in very good classification accuracy (> 95%) even when
controlling more than ten grasping motions [2]. However,
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classification presents inherent reliability issues, particularly
related to the unpredictability of misclassifications and the in-
creasing of complexity with the number of considered grasping
actions/motions. In response, simultaneous and proportional
(s/p) control has more recently taken center stage in the
research community [3], which relies on exploiting regression
models to map sEMG signals into continuous motions of
multiple robot hand grasps [4]. The core advantage of s/p
HRi is that facilitates the user to react in face of mapping
inaccuracies/unpredicted motions, thanks to the continuous
nature of the modulable robot hand inputs. A major issue
of s/p approaches is that — when they are implemented in a
supervised fashion — they require an SEMG data collection and
explicit labeling in order to train the regression model. Note
that, since in this work we are interested in s/p control enforced
by means of regression of SEMG signals, the kind of labelling
we refer to is any instant-by-instant continuous labelling of the
SEMG signal denoting the grasping motions that are desired
to be controlled on a robot hand. Unfortunately, labeling of
SEMG signals for telemanipulation purposes is a tedious and
frustrating procedure that is critical for the user. Furthermore,
several systematic labeling imprecisions cannot be avoided,
due to well-known difficulties in labeling biological data [5].

In order to bypass these limitations, unsupervised regression
approaches have been explored. State-of-the-art approaches
have typically exploited the synergistic organization of the
human motor control system, assuming that the SEMG signals
are the result of a mixture obtained by the product of a
basis matrix (the muscular synergies matrix) with an encoding
vector (the motor drives vector). In this context, unsupervised
regression has been successfully realized by applying Non-
negative Matrix Factorization (NMF) to unlabelled sEMG
training data [6], [7]. However, a very limiting assumption of
the traditional NMF-based approach is that different motions
must correspond to motor drives vectors belonging to (mostly)
orthogonal subspaces [8]. Unfortunately, such assumption is
not going to be fulfilled in practice, due to the complexity
of musculo-tendon mechanisms in the execution of mul-
tiple grasping motions. This implies specific single target
hand motions to be representable by linear combinations of
muscular synergy vectors corresponding to other interfering
motions, bringing the regression output to be unreliable for
robot hand control. Importantly, these limitations can be
seen as a consequence of the intrinsic absence of nonlinear
fitting capabilities of unsupervised approaches. More recently,
variants of the traditional NMF-based approach considering
sparsity-constraints [9], time-varying muscular synergies [10]
and autoencoders [11] have been proposed, without however
resolving the performance drop when in presence of multiple
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grasping motions. For this reason, in this study traditional
NMEF-based approaches are considered for comparison.

In this work, a novel HRi based on self-supervised re-
gression of SEMG signals for HITL robot grasp control is
presented. Specifically, we demonstrate that NMF can be
used to compute the labels to be provided to a Deep Neural
Network (DNN) [12] architecture to reliably map sEMG
signals into robot hand control inputs, even in presence of
multiple grasping motions. Experimentations were performed
recruiting two groups of five subjects in offline and online
sessions, respectively, see Fig. 1. In the offline experimental
session, the regression capabilities of traditional NMF-based
approaches were compared with the self-supervised method,
demonstrating the improved performance of the proposed
solution. Also, systematic evaluations on three different sim-
ulated robot hands with dissimilar kinematic structures were
carried out, supported by statistical analyses. In the online
session, the involved subjects performed real-time control of a
wearable robot hand, reporting for smooth and highly repeat-
able regulations of the grasps during multiple object grasp-
transportation-release tasks, also providing statistical support
for the reliability of the system. The paper is organized as
follows: Sec. II presents robot hands control strategy, tradi-
tional NMF-based approaches and proposed self-supervised
method; Sec. III reports the offline and online experiments
descriptions and results; Sec. IV discusses work implications,
results comparisons and possible limitations; finally, Sec. V
draws the conclusions.

II. MATERIALS AND METHODS
A. Setup

1) sEMG Signal Acquisition: The 8-channel wearable
SEMG armband gForcePro (see Fig. 1) by OYMotion was
used to acquire SEMG signals from the forearm muscles of the
user. The armband was positioned in proximity of the bellies
of the Flexor Digitorum Superficialis and Extensor Digitorum
Communis muscles, following the guidelines outlined in [13].
Raw sEMG signals were acquired at 1 kHz via a built-
in Bluetooth interface, and transmitted to a nearby PC. A
processing chain was then applied to each sEMG channel,
consisting of a 50 Hz notch filter to eliminate powerline
interference, a 20 Hz highpass filter to remove baseline noise
and, finally, the computation of the root mean square (RMS)
value over a 200 ms sliding window.

2) Robot Hands And Controller: The robotic grasping
device used for the online experiments was the ARI10
Robot Hand by Activat8 Robots, a lightweight anthropomor-
phic robot hand with 5 fingers and 10 degrees-of-freedom
(DoFs).The AR10 servomotors were controlled at low-level
via a Robot Operating System (ROS) interface. Considering
that the AR10 presents n; = 10 joints (2 joints per finger),
let us denote with ¢'(t) € R™ the vector of reference
joint angles. In this study, the robot hand was controlled in
such a way to allow the regulation of the closure level of
ng = 3 different grasping motions corresponding to power,
tripodal and ulnar grasps (see Fig. 1). The criteria for the
choice of these grasping motions regards the selection of
three volar grasps characterized by different Virtual Finger
(VF) configurations, begin the VF defined as a functional

unit comprised of at least one real physical finger (which
may include the palm) acting in unison to apply opposing
forces on the object and against the other VFs in a grasp [14].
In particular, for the power grasp, three VFs are involved:
(VF1) the palm, (VF2) the thumb and (VF3) the index-middle-
ring-little fingers; whereas, for the tripodal and ulnar grasps,
the (VF3) was associated with the index-middle fingers and
ring-little fingers, respectively. Specifically, the ARI10 joint
references were imposed as
g (t) = Sa(?), (1)
where S € R™/*"G js the grasp synergy matrix and «(t) =
[a1(t) ao(t) az(t)]T € R"¢ is the vector of synergy
activations, with ng the number of grasping motions. In
particular, in order to allow the regulation of the closure
level of power, tripodal and ulnar grasps, the grasp synergy
matrix S was computed in accordance with the concept of
postural synergies [15], as detailed in the following. A matrix
collecting four hand configurations, @) € R™ %4 was built,
defined as @ = [gon gpw ¢TrR quL], in which gon, gpw, ¢TR,
quL € R™ are the vectors of joint angles for the open hand
(OH) configuration and the configurations corresponding to
the maximum closure level of power (PW), tripodal (TR)
and ulnar (UL) grasps, respectively (see Fig. 1). Then, the
matrix S € R/ *"¢ (ng = 3) is obtained by performing the
Principal Component Analysis (PCA) on Q). From the PCA,
the principal components s1, 2, s3 € R™” are obtained, corre-
sponding to the orthogonal directions of maximum variance of
the configurations collected in (), and the grasp synergy matrix
was then built as S = [s1 s2 s3]. In this way, by defining the
vectors of synergy activations corresponding to the maximum
closure level of power, tripodal and ulnar grasps as apw, QTR,
auL € R™¢, respectively, their values can be computed as
apw = STgpw, omr=5Tgm, auww=SYqL, @
where ST is the pseudo-inverse of the matrix .S. In this way,
eq. (1) can be used for robot hand grasp control based on
SEMG signals as will be detailed in Sec. II-B. Note that
postural synergies have been largely investigated in literature:
in [15], postural synergies were treated from the point of
view of a geometrical tool to structure the human hand
behaviour for robot hands design and control, whereas, in
[16], the role of postural synergies for robotic grasping quality,
robustness and force regulation was investigated. In this study,
the concept of postural synergies is exploited to embed robot
hand configurations in a lower dimensional space with respect
to the full-dimensional joint space, in order to be able to
develop a less complex SEMG regression model for improved
performance (see Sec. II-C.) Furthermore, also three simulated
robot hands were considered for an offline study, see Sec.
III-B. The considered additional robot hands were: (i) a ROS-
based simulator of the ARI1O0; (ii) a SynGrasp-based [17]
simulator of the University of Bologna Hand IV (UBHand)
[18], an anthropomorphic fully-actuated robot hand with 15
DoFs; and (iii) a SynGrasp-based simulator inspired to the
Barrett Hand [19], a 3-fingered robotic gripper with 8 DoF (see
Fig. 1). In particular, for these additional simulated robot hands
the same controller as the one introduced in eq.s (1)-(2) was
used, by considering the specific values of n; in eq. (1) and
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Fig. 1: Schematic representation of the SEMG-based robot hand multi-grasp control realized in this study.

joint configurations in eq. (2) for the simulated hands. Note
that, even if more general procedures have been proposed for
mapping human hand motions on non-anthropomorphic robot
hands [20], in this study the definition of the matrix ) for
the BarretHand-inspired robotic gripper was done by a simple
heuristic association of four predefined joint configurations of
the gripper — namely qon, ¢pw, ¢TR, qUL — that were desired
to correspond to the open hand, closed power grasp, closed
tripodal grasp and closed ulnar grasp configurations of the
user’s hand, respectively. In our specific case (see Fig. 1) we
associated: gog with the gripper configuration with all fingers
extended; gpw with the configuration with all fingers flexed;
grr Wwith the configuration with only the first and second
fingers flexed; and, finally, qu. with the configuration with
only the first and third fingers flexed.

B. Traditional NMF-based Unsupervised Regression Ap-
proaches for Robot Grasp Control

1) Single Grasping Motion Regression Via NMF: Aiming
at performing an sEMG-based unsupervised regression of a
single grasp, let us consider a user executing the specific
grasping motion of interest while an 8-channel SEMG signal
(see Sec. II-Al) training set of d samples is recorded and
collected in the matrix £/ € R8*<. The matrix E can be written
as the mixture [6]

E=WH 3)
where W € R®*? is the muscular synergy matrix and H €
R?*? is the motor drive matrix. In particular, W and H can
be written as

W= [wew], H=[RA]", 0
where we, wy € RS and he, hy € R? are the extension
and flexion components of the muscular synergy and motor
drives matrices, respectively. In order to estimate W and H,
the NMF can be applied to the training set E. However,
among W and H, we are mostly interested in the estimated
muscular synergy matrix W, because it can be then exploited
to online compute the vector of instantaneous motor drives
H(t) = [he(t) he(t)]T € R? (note that H(t) differs from H,
since it denotes the instantaneous motor drives) as

H(t) = WTE(t) (5)
where W™ is the pseudo-inverse matrix of W and E(t) =

[e1(t) - -es(t)]T € R® is the vector of the online sEMG
signal. Finally, the grasp closure level o(t) is obtained as
k k
o(t) = Fhe(t) = 5 ha(t) + ks, (6)

where, by properly setting the scahng factors k1, ko in order
to normalize h. and h¢ in eq. (4) and k3 = 1, o(t) is scaled in

the range [0, 1]. It is then possible to control a single specific
grasping motion of the robot hand imposing, in eq. (1),

apw o(t), for only power grasp regulation,
a(t) =  atr o(t), for only tripodal grasp regulation, @)
ayr o(t), for only ulnar grasp regulation,

where apw, artr and ayp have been introduced in eq. (2).
Therefore, by defining the robot hand control input as in eq.
(7), the closure level of power, tripodal or ulnar grasps can
be controlled singularly from online SEMG signals (E needs
to be recorded accordingly), without the possibility of multi-
grasp control. We refer to this unsupervised SEMG regression
approach as “single-NMF”.

2) Multiple Grasping Motions Regression Via NMF: In the
general case, we want now to use the NMF for the regression
of N different grasping motions. According to the traditional
approach, the procedure requires that for each generic n-th
grasping motion (1 < n < N), the matrix E,, collecting
the sSEMG signal training set recorded during the execution
by the user of the only n-th grasping motion is considered.
The related muscular synergy matrix W,, is then estimated
independently from the other grasping motions applying the
NMF to E,,, and therefore estimating, in total, n muscular
synergy. The muscular synergy matrix W for all grasping
motions is then built by concatenating the single muscular
synergy matrices of each specific grasping motion:

W=[W, Wy - Wy, -~ Wnl. (8)

Therefore, it is possible to consider the pseudo-inverse matrix
W of the matrix W as given by eq. (8), and it is possible
to exploit eq.s of the form of (5)-(6) to compute the grasp
closure levels for each of the n considered grasping motions.
Coming back to the case considered in this study of power
(PW), tripodal (TR) and ulnar (UL) grasps, three calibration
matrices Fpw, Err and Eyp have to be collected, for which
three muscular synergy matrices Wpw, Wrr and Wy are
estimated, respectively. Thereafter, W is built according to
eq. (8), and the three grasp closure levels opw(t), orr(f) and
oyL(t) are computed as

k1
0i(t) = T3 he(t) = = he(t) + kai ©)

where ¢ = {PW,TR,UL}, o;(t) € [0,1], and he ;(t) and h;(¢)
are computed from the online instantaneous values of the
SsEMG signal F(t) as
[he,pw (t) he,pw () he,rr(t) herr(t) he L (t) hf,UL(t)}TZ
=WHE(t) = [Wpw Wi WuLltE(t), (10)
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where terms in eq.s (9) and (10) have an analogous meaning
as in eq.s (6) and (5). The sEMG-based robot hand multi-grasp
control is then obtained imposing, in eq. (1),

Oé(t) = apwdpw(t) + OéTRO'TR<t) + aULaUL(t). (11D

In the following, we refer to this multi-grasp unsupervised
regression approach as “concatenated-NMF”.

C. Proposed Self-Supervised Regression Of sSEMG Signals For
Robot Hand Multi-Grasp Control

We propose an approach based on a DNN, which is trained
in a self-supervised fashion by means of a proper application
of NMF. Let us consider N different grasping motions, and
the user executing a generic grasping motion n (1 < n < N).
Accordingly, a matrix E,, is defined as the matrix collecting
the sEMG signal samples recorded during the execution by
the user of the grasping motion n. In this way, a total of
N matrices B, € R4 . Ey € R®¥ js available.
Thereafter, NMF is applied to each matrix F,, in order to
estimate the relative muscular synergy matrix W,,. Instead of
concatenating the N synergy matrices Wi, ..., Wy € R¥V
to form a new matrix as in the concatenated-NMF approach,
we use them to compute the offline estimated motor drive
matrices Hy € RN>*d1 Hy € RVXdn a5

H, = {Zﬂ —WFE;, i={1,...,N}. (12)
fi
Then, with a similar reasoning as in eq. (6), we can ob-
tain the offline estimated grasp closure level vectors 61 €
R 5y € RYXIN a5
ki ko .
6T = ; WY, — ; WL+ kg, i={1,...,N}.
Moving to the case considered in this study of power (PW),
tripodal (TR) and ulnar (UL) grasps, eq. (13) becomes

13)

kiisp  kags .
6T = ; WY — ; hi, + ki, i={PW, TR, UL}, (14)

where terms in eq.s (14) have an analogous meaning as in
eq.s (6). Since dpw, 6rr and Gy, in eq. (14) correspond to
the calibration matrices Epw, Ergr and EUL, respectively, they
represent an (offline) estimation of the grasp closure level for
the power (PW), tripodal (TR) and ulnar (UL) grasps, without
any ambiguity of overlapping grasping motions. This allows
to define an SEMG training set Er as

Er = [Epw Err Eyp] € R®*(drwidmctdo) (15)

and corresponding label 7' € R3* (dpw+dm+tdun) constructed as

T=[nm 73]T = [wpwOpw aTrOTR QULGUL],  (16)
where apw, atr, aur € R"¢=3 are defined in eq. (2). There-
after, we exploit the training set E and label T to train a DNN
for sSEMG-based robot hand multi-grasp control. Importantly,
note that the label T of the training set Ep is automatically
extracted from the SEMG calibration data, allowing to train the
DNN in a self-supervised manner as detailed in the following.

Let us consider the vector of online instantaneous sEMG
signal E(t) = [e1(t) --- es(t)] provided as input to a DNN
architecture, as depicted in Fig. 2. The network is composed
by n hidden layers and an output layer. The generic j-th

Input )
(RMS sEMG) 15! Hidden Layer

n-th Hidden Layer

Output Layer

Fig. 2: DNN architecture for the self-supervised regression.
hidden layer of the DNN contains /N; neurons with Rectified
Linear Activation Unit (ReLU) activation function F(-), and
bias vector b/) € RNi. The input vector /=1 () € RNi-1
coincides with the output of the (j — 1)-th hidden layer,
characterized by IN;_; neurons. Accordingly, the output vector
of the j-th hidden layer a(?)(t) € R™ is given by

a9 (t) = F(GDa=D (1) + b)), (17)
This structure describes each hidden layer, except for the first
on in which a weight matrix G € RNi*Nn  with N, =
8, is applied to the input E(t) € R3. The output layer is
characterized by N,,4; = 3 neurons, a weight matrix GU) €
RMNw1*No and a sigmoid activation function S(-). Thus, the
output vector a(™*1)(¢) of the DNN is given by

T
") = oy V(1) ag" (1) 0"V ()] =

= S(G" Ve (1) 4 pn+D) (18)

where agnﬂ)(t), a(2"+1)(t) and ag"H)(t) are the three scalar
outputs of the network, and (™ (t) € RN» and b("*D) ¢
RN»+1 are the input and bias vectors of the output layer. The
objective of the network introduced so far is to train the weight
matrices and bias vectors such that the outputs of the network
a{" ™ (1), S () and o™ (1) allow to control the closure
level of power, tripodal and ulnar grasping motions of the robot
hand. To this purpose, the network training can be performed
through the scaled conjugate gradient back-propagation algo-
rithm with mean squared error (MSE) as loss function, using
as training set the matrix Ep previously introduced in eq.
(15), and as label the target outputs 7 = [r; 75 73]7 defined
as described in eq. (16). Once the training is carried out, the
control of the robot hand is realized by imposing, in eq. (1),
the vector of grasp synergy activations as

T
alt) = [ 1) a5 (1) af (1) (19)

III. EXPERIMENTS AND RESULTS
A. Subjects

We recruited 10 healthy subjects (age: 30 + 4.2, right-
handed: 9 sbj.s, left-handed: 1 sbj.s). Five subjects were
involved in an offline experimental session (see Sec. III-B),
for systematic evaluations of the proposed self-supervised
regression, in order to perform comparisons with the single-
NMF and concatenated-NMF approaches, and considering
three different simulated robot hands (refer to Sec. II-A2). The
other five subjects were involved in an online experimental
session (see Sec. III-C), in which they were required to online
control the real AR10 Robot Hand (see Fig. 5) in several
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grasp-transportation-release tasks. The two groups of subjects
were formed randomly. None of the subjects had previous
experience with the system and sEMG. Experiments were
conducted in compliance of the Declaration of Helsinki, and
participants signed an informed consent form.

B. Offline Experimental Session

The involved subjects were asked to replicate six times
the following sequence (while SEMG signals were recorded):
continuous modulation of the power grasp from the minimum
closure level (open hand) to the maximum closure level and
then back to the open hand, then followed by the same
continuous modulation of the tripodal and ulnar grasps. Note
that the motion of the reference virtual hand on the screen
was exploited to retrieve the (simulated) robot hand synergy
activation references for the offline systematic evaluations and
comparisons, see Fig. 3, as reported in the following section.

1) Systematic Evaluation of Regression Methods: Three
nested cross-validations (nCV) were carried out independently
for each of the considered regression methods, i.e. single-
NMF, concatenated-NMF and the proposed self-supervised
regression, using the SEMG datasets obtained as explained in
the previous subsection. The nCV was performed in a subject-
specific paradigm, meaning that the nCV carried out for each
regression method was separately conducted for each of the
subjects. The nCV was designed to minimize biases and/or
artificial overestimations of the results, and was composed of
the following steps:

(i) the sSEMG dataset — constituted by 6 repetitions of the
power-tripodal-ulnar motion — was partitioned in 6 dif-

ferent combinations of a subset of 5 motion repetitions
plus a subset of 1 motion repetition;

for each of these partitions, the subset of 5 motion repe-
titions was used to perform a 5-fold CV (with each fold
containing one power-tripodal-ulnar motion repetition) to
conduct a grid-search for the selection of the regression
model hyper-parameters, obtaining a total of 5 trained
regression models. Therefore, this step constituted the
inner nested loop of the nCV,

thereafter, for each of the dataset partitions, the perfor-
mance of each of the 5 models trained in the inner nested
loop was evaluated on the remaining external subset con-
taining 1 motion repetition (i.e., the test set), resulting in 5
different model evaluations. The metrics used to evaluate
this performance was the Dynamic Time Warping (DTW)
similarity measure between the model outputs and the
reference synergy activations (see previous Sec. III-A and
Fig. 3), since it is a distance measure particularly suited
for sSEMG-based s/p control [5];

this evaluation of the 5 “inner” models on the external
test set was repeated 6 times, for each of the 6 partitions
of the dataset, constituting the outer loop of the nCV;,
once outer and inner loop iterations were completed for a
specific regression method and subject, a total of 30 DTW
evaluations of as many trained models were available.
Finally, the mean value over these 30 DTW measures
was computed, constituting the result of the nCV for a
specific regression method and subject.

(it)

(iii)

(iv)

(v)

The nCV was therefore exploited for the evaluation of the
single-NMF, concatenated-NMF and proposed self-supervised
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Fig. 5: (a) Wearable SEMG-based robot hand setup. (b) Setup for

the grasp-transportation-release online experiments.
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regression approaches by adequately arrange the offline SEMG
dataset in accordance with Sec. II-B1 (single-NMF), Sec.
II-B2 (concatenated-NMF) and Sec. II-C (self-supervised re-
gression). The nCV and DNN code has been released at the
repository: https://bit.ly/3BbJDZS.

2) Results of the Offline Systematic Evaluation: In Fig. 3,
it is possible to observe how the DTW-aligned [5] robot hand
synergy activations estimated by the single-NMF approach
resembled the reference synergy activations with high fidelity.
On the other hand, by looking at the middle row of Fig. 3,
it can be clearly observed that the references were very badly
followed by the estimated values. This behaviour confirms the
critical drop in regression performances of the concatenated-
NMF multi-grasp regression. Conversely, in the bottom row of
Fig. 3, the proposed self-supervised regression approach fol-
low very well the references of all grasps, showing to be able
to overcome the performance degradation of concatenated-
NMF. The single subject results are also confirmed by the
results obtained considering all the subjects, reported in the
boxplot of Fig. 4(a). Incidentally, it is important to note that the
single-NMF is a regression approach that operates only with
single grasps, and therefore it cannot be compared online with
other regression methods able to deal with multiple grasping
motions.

Statistical analysis of offline results: A two-way repeated
measure Analysis of Variance (ANOVA) was carried out on
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Fig. 7: Single subject online reg(s:alts for one grasp-transportation-
release task. (a) Grasp modulation in the synergy activation subspace
(1°¢, 2" and 3"¢ synergy activations correspond to a1, oo and a3 in
eq. (1)). (b) Synergy activations plotted along time. (c) Mean value
of the Euclidean distance from nominal grasps in the synergy activa-
tions subspace, for all subjects. “*” indicates statistically significant
difference.

the results reported in Fig. 4(a) for the factors Grasp Type
and Regression Method. The statistical significance was set
to p < .05. The ANOVA revealed a statistically significant
influence of Regression Method (F(2,36) = 76.85, p < .001),
whereas no significant influence was reported for the Grasp
Type and the factor interaction. Therefore, a Tukey Test was
performed for pairwise comparisons, revealing a statistically
significant difference only between the concatenated-NMF
approach and the other two approaches This demonstrates that
the self-supervised regression presented statistically signifi-
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cantly better performances with respect to the concatenated-
NMF. We then performed a further statistical evaluation of the
offline experimental session, taking into consideration three
different simulated robot hands: (i) a ROS-based simulator of
the AR10, (ii) a SynGrasp-based simulator of the UBHand
(anthropomorphic robot hand), and (iii) a SynGrasp-based
simulator inspired to the Barrett Hand (3-fingered robotic
gripper). In this case, the mean value of the DTW measure
obtained for each subject from the nCV — namely mprw —
was normalized for results comparison reasons, computing the
DTW error ratio eptw ratio aS
mpTw

(20)

EDTW,ratio — y
ZDTW

where zprw is the DTW measure computed between the
reference synergy activations of a specific grasping motion and
the synergy activations corresponding to constantly keeping
the open hand configuration. Fig. 4(b) reports the boxplot
of the DTW error ratios for all subjects, on which a two-
way repeated measure ANOVA was conducted, investigating
the factors Robot Hand Type and Grasp Type. Statistical
significance was set to p < .05. The ANOVA revealed no
statistically significant influence for both Robot Hand Type
and Grasp Type factors, as well as for the factor interaction
(Fig. 4(b)). This demonstrates that the positive performances
of the proposed SEMG-based self-supervised regression were
not biased to a specific robot hand kinematic structure.

C. Online Experimental Session

1) Grasp-Transportation-Release Task: Each subject was
instructed to put on the wearable setup shown in Fig. 5(a)
and perform two repetitions of the power, tripodal and ulnar
opening/closing grasping motions while the SEMG data was
acquired in order to train the self-supervised DNN according
to Sec. II-C. Thereafter, based on the specific setup shown in
Fig. 5(b), the subjects were required to: (i) grasp three different
objects, one at a time, from the right side; (ii) transport the
objects towards the opposite side, climbing over a 20 cm wall;
(iii) release each object inside the correct placeholder-box. The
objects were a small rigid box (7x7x19 cm), a plastic cylinder
(5x5x25 cm) and a soft rubber ball (8 x8x 8 cm) , which
mandatory required to use ulnar, power and tripodal grasps,
respectively. The task was repeated 5 times by each subject
with random objects order.

2) Results of the Grasp-Transportation-Release Task: In
Fig. 6, a photo sequence of the online grasping task is reported.
Fig. 7(a) reports the modulation, by means of the proposed
self-supervised regression, of the trajectory in the synergy
activations subspace. In particular, the green, blue, red and
yellow black-edged circles represent the nominal open hand,
power, tripodal and ulnar robot hand configurations. Therefore,
it is possible to appreciate in Fig. 7(a) how the subject naturally
moved to the neighborhoods of the power, tripodal and ulnar
grasp configurations. We also report in Fig. 7(b) the the syn-
ergy activations along the time axis. Considering aggregated
results, Fig. 7(c) reports, for each subject, the mean value
of the Euclidean distance between the robot hand synergy
activations modulated during the object grasping phases (i.e.,
between t1-to, t3-t4 and t5-tg in Fig. 7(c)) and the respective

nominal grasp in the synergy activations subspace, computed
over the five task repetitions, and grouped for the different
types of grasping and distances from nominal grasps.
Statistical analysis of online results: A two-way repeated
measure ANOVA was performed on the results reported in Fig.
7(c) for the factors Online Object Grasping Type and Distance
From Nominal Grasp Type. Statistical significance was set
to p < .05. The ANOVA revealed a statistical significant
influence of the interaction between Distance From Nominal
Grasp Type and Online Object Grasping Type (F(4,33) =
55.76, p < .001), whereas no significant influence of the
single factors was reported. A Tukey Test was performed
for pairwaise comparisons, revealing that for all subjects the
distance from the correct nominal grasps was statistically
significantly lower then the distance from the other nominal

grasps. IV. DISCUSSION

Implications of the work: The proposed self-supervised
method allows to avoid the burden for the labeling of SEMG
data, which is a complex and frustrating procedure. This study
also demonstrates the viability of the proposed method for
robot hands with dissimilar kinematic structures. Furthermore,
our approach also implies a more reliable and natural SEMG-
based multi-grasp control of robot hands with respect to
previously proposed unsupervised regression methods, mainly
limited to the decoding of wrist motions.

Comparison to existing literature: We first of all con-
sider supervised regression approaches, since they constitute
a benchmark of regression performance in literature. To this
aim, we select three remarkable studies reporting for the
following metrics of similarity between predictions and ground
truth: in [21], an R? value within the range of 0.8-0.9 was
reported using a method based on Kernel Ridge Regression
(KRR); in [22], a normalized mean squared error (nMSE)
within the range of 0.2-0.3 was obtained employing Kernel
Ridge Regression (KRR); and, finally, in [23], a root mean
squared error (RMSE) within the range of 0.07-0.08 was
reported using Long Short-Term Memory (LSTM) neural
networks. For comparison purposes, we report that the results
shown in Fig. 4(a) correspond to an R? value, nMSE, and
RMSE of 0.8423, 0.1355, and 0.0735, respectively, averaged
over all the subjects, grasp types and repetitions. Therefore,
the outcomes achieved through the proposed self-supervised
method approach the levels of error observed in the selected
literature works. Secondly, for the consideration of literature
works using unsupervised/semi-supervised methods, a quali-
tative comparison is reported, due to the intrinsic lack of a
ground truth for metrics comparison. We therefore report in
Table I the features of three selected sEMG-based unsuper-
vised regression approaches for robot hand control, along with
our proposed method. As can be seen in the table, the proposed
self-supervised approach is the only one providing nonlinear
fitting capabilities, allowing to actually decode more complex
actions like multiple grasping motions.

Possible limitations: Firstly, possible limitations regard the
fact that the variability of the SEMG signals due to long time
usage of the system was not considered in the context of this
specific study. Indeed, the effects on the SEMG of aspects
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TABLE I: Feature comparison between proposed method and representative SEMG-based unsupervised regression approaches.

Ref. Regression Method Nonlinear Fitting Decoded Actions Experimental Protocol
9] Quasi-unsupervised (NMF with No Wrist ﬁex(ex.l, Online virtual target reaching assessment
sparseness contraints) rad/uln deviation
[10] Unsupervised Adaptive (Incremental NMF No Wrist flex/ext, Online virtual target reaching assessment and
guided by sparseness contraints) rad/uln deviation clothespins relocation with real robot hand
[11] Autoencoder No Wrist ﬂex{exll, Online virtual target reaching assessment
rad/uln deviation
Proposed Self-supervised Multiple grasps (Power, Ofﬁl{‘ne DTW—basﬁd assessment with multlplle virtual
approach (NMF combined with DNN) Yes tripodal, ulnar graps) ands and online grasp-transportation-release
PP ’ task with real robot hand

like muscle fatigue, mental tiredness, skin perspiration and
even limb/body postures could be accounted by extending the
proposed HRi to an adaptive version capable of retraining with
new SEMG data in an incremental fashion. Secondly, other
possible limitations of the present study regard the fact that
experiments were conducted only on healthy subjects, without
involving amputees. Indeed, amputees typically show different
muscle activation patterns and residual limb characteristics,
and therefore a dedicated evaluation of the accuracy of the
proposed self-supervised regression method is needed. Addi-
tionally, for experiments involving amputees, it will be crucial
to conduct a proper clinical validation to test required safety,
reliability, and performance standards.
V. CONCLUSIONS

The present study investigated the development of SEMG-
based control strategies for robot hands avoiding explicit
labelling procedures, by combining NMF with DNN for self-
supervised regression of SEMG signals. The study reports
for experiments with 10 healthy subjects, and demonstrates
the effectiveness of the proposed approach in both offline
evaluations and online real-time control of a wearable anthro-
pomorphic robot hand. The results report for a high reliability
over repeated grasp-transportation-release tasks with different
objects. Overall, this work contributes to the development of
more advanced and effective sSEMG-based control strategies
in telemanipulation, prosthetics and teaching by demonstration
scenarios.
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